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Abstract
In this chapter I will discuss the strength of electronic correlations in the normal

phase of Fe-superconductors. It will be shown that the agreement between a wealth
of experiments and DFT+DMFT or similar approaches supports a scenario in which
strongly-correlated and weakly-correlated electrons coexist in the conduction bands
of these materials. I will then reverse-engineer the realistic calculations and justify
this scenario in terms of simpler behaviors easily interpreted through model results.
All pieces come together to show that Hund’s coupling, besides being responsible
for the electronic correlations even in absence of a strong Coulomb repulsion is
also the origin of a subtle emergent behavior: orbital decoupling. Indeed Hund’s
exchange decouples the charge excitations in the different Iron orbitals involved in
the conduction bands thus causing an independent tuning of the degree of electronic
correlation in each one of them. The latter becomes sensitive almost only to the
offset of the orbital population from half-filling, where a Mott insulating state is
invariably realized at these interaction strengths. Depending on the difference in
orbital population a different ’Mottness’ affects each orbital, and thus reflects in the
conduction bands and in the Fermi surfaces depending on the orbital content.

1 Introduction: electronic correlations?

Soon after the discovery of high-temperature superconductivity in the first iron pnic-
tides (see chapter 1 by H. Hosono) a debate has sparked off, which is still lively to
date: are the conduction electrons in these materials weakly or strongly correlated?
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This question is of fundamental importance on different levels.
One is methodological, and it concerns finding the best theoretical viewpoint to

model and predict the electronic properties of these compounds. Indeed mirroring
the two sides of the conundrum two main points of view have polarized the com-
munity working on the subject. On one side the encouraging results of the standard
one-body schemes such as Density Functional Theory (DFT), well capturing the
topology of the Fermi surfaces and the main features of the bandstructure (see chap-
ter 10 by W. Ku), have pushed many scientists towards weak-coupling approaches
(see Chapter 12 by A. Chubukov). Very generally, in these approaches the mag-
netism - experimentally found in the great majority of the stoichiometric compounds
- is viewed as due to the nesting features of the Fermi surfaces and the superconduc-
tive pairing stems out of long wavelength collective excitations due to the proximity
to the ordered state, such as spin-fluctuations. On the other side by postulating the
vicinity of a Mott insulator and thus strong short-ranged electronic correlations,
the magnetic phases of these materials were successfully modeled with a frustrated
multi-orbital Heisenberg model (named ”J1-J2”). Metallicity and spin-fluctuation
mediated superconductivity in this view are obtained upon doping, in analogy with
the single-band t-J model for cuprate superconductors.

Indeed analogies and parallels with these materials, which are the leading high-
Tc superconductors, have been traced or sketched. The cuprates are the very paradigm
for strongly correlated physics in the context of superconductivity, due to their phase
diagram revolving around a Mott (charge-transfer) insulating antiferromagnetically
ordered phase, and exotic bad-metallic properties defying an understanding as of
today. The temptation to carry over all the wealth of new concepts and techniques
developed in the 25-years attempt to understand the physics of these materials is
natural, however to what extent this is possible depends obviously on the actual
degree of correlation of Iron-based superconductors (Fe-SC).

Another important reason for which knowing the actual correlation strength is
important, even having picked a side in the original debate, is the need of a quan-
titative theory. Indeed the two aforementioned starting points are both somewhat
extreme. For instance the accord between observed Fermi surfaces and the ones
calculated in the weak-coupling picture is substantially improved by including dy-
namical correlations (e.g. by Dynamical Mean-Field Theory - DMFT) that shift
and renormalize the bands. This obviously also affects the superconductive pairing,
since the presence or absence of nodes is very sensitive to the detailed shape and
size of the Fermi surface sheets, among other factors. Also some difficulties arise
in weak-coupling approaches in reproducing the magnetic order in the iron chalco-
genides. On the other hand a quantitative estimate of the local magnetic moments
postulated in the strong coupling approach is another aspect where the actual cor-
relation strength matters and in this case too DMFT is a key tool for a realistic
approach.

Indeed a possible settling of the initial viewpoint dichotomy is towards inter-
mediate correlations, which would not invalidate the weak-coupling band-structure
and possibly bring it closer to the observed one [1], while favoring the local quickly
fluctuating moments bringing to the correct magnetism[2].
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In this view an important role is played by the multi-orbital nature of Fe-SC
bands, and in particular by Hund’s coupling, the intra-atomic exchange energy fa-
voring the distribution of electrons in the same atomic shell on different orbitals
with their spins aligned [3, 4] which is known to be sizable in atomic Fe (∼ 0.8eV ).
Electronic correlations are indeed triggered by electron-electron interactions but in
a multi-orbital context they are in a highly nontrivial relation to the Coulomb repul-
sion and Hund’s coupling strengths. This means that the local Coulomb interaction
energy U (of which Hund’s J is a fraction) is likely not larger than the bandwidth,
but the complexity introduced by Hund’s coupling prevents this fact from imply-
ing weak correlations. In the ”intermediate correlation” picture the role of Hund’s
coupling is mainly enhancing the effect of the local coulomb repulsion on the cor-
relation strength. Besides, it is also of utter importance in determining the magnetic
ground states[12, 1].

From the experimental point of view contrasting evidences have come, that
can support weak, strong and intermediate correlation views. A few examples are:
hardly any Hubbard band has been detected by X-ray spectroscopies pointing to-
wards weak correlations [5]; the room-temperature resistivity is of the order the
mΩcm, typical of strongly correlated bad metals [6]; reduction of the low energy
optical spectral weight is moderate and has been taken as an evidence of intermedi-
ate correlations [7].

The present chapter is devoted to the illustration of another possible solution of
the puzzle, which is the presence of both strongly and weakly correlated electrons,
coexisting in the conduction bands. The various types of electrons showing up dif-
ferently in various physical properties, this may explain many of the contrasting
evidences on correlations, in a nutshell.

This view, originally put forth by the author and collaborators in Ref. [8, 9] and
postulated on a phenomenological basis in Ref.[10, 11, 12, 13] is more and more
supported by realistic calculations using different techniques for treating the elec-
tronic correlations on top of DFT bandstructures: DMFT [3, 14, 15, 16, 17, 1, 18,
19, 20, 21], variational Montecarlo[22], Slave-spins mean-field (SSMF)[23, 24],
Hartree-Fock mean-field [25], fluctuation-exchange approximation [26], Gutzwiller
approximation [27].

However it is clear that, to date, the predictivity of full ab initio approaches for
correlated materials is still under development (particularly due to the presence of
”double counting” corrections for the electronic interactions, see section 2). Thus
the approach chosen here is rather to use theoretical guidance by these realistic
approaches to harvest the wealth of available experimental data in search of the
main trends as far as electronic correlations are concerned.

A full analysis of experiments in parallel with theory (DFT+Slave-spin[28,
29]), supporting this scenario was performed on (both hole- and electron-) doped
BaFe2As2 by the author together with G. Giovannetti and M. Capone in Ref. [30],
and is summarized in Figures 1 and 2. The experimental estimates of the mass en-
hancements induced by correlations show two main trends: with reducing filling
of the conduction bands they globally increase, and they spread. This trend culmi-
nates for the stoichiometric end-member KFe2As2 (half a hole of doping per Fe ion
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Fig. 1 Experimental mass
enhancement estimates in K-
and Co- doped BaFe2As2
from different techniques (see
legend). Different ARPES
and Quantum Oscillation data
at the same doping represent
the estimate for the various
sheets of the Fermi surface.
The spread of these estimates
increases with hole-doping
and can be interpreted as an
increasing selective Mottness
(see text). From [30].

compared to BaFe2As2) in which the masses of the carriers are so different that a
heavy-fermionic behaviour is realized[31]. This is exactly what the theoretical cal-
culations predict (see Fig. 2) and the reason for this behaviour will be clarified in
detail in this chapter.

Indeed in the same work Ref. [30] it was pointed out that the general mecha-
nism behind this is the ”orbital decoupling”[32] induced by Hund’s coupling. This
is a general emergent phenomenon in which the charge excitations in different or-
bitals become decoupled under certain conditions (the most important being a siz-
able Hund’s coupling) and correlations are tuned in every orbital in an essentially
independent way. The main variable for tuning the correlation in each orbital be-
comes the doping of that orbital by respect to individual half-filling. Then the final
orbital populations (i.e. those in the interacting system, in contrast to the bare orbital
populations in absence of dynamical correlations) determine the correlation strength
in each orbital (this has been termed selective Mottness).

This robust behavior is found common to all Fe-SC investigated thus far and
an essential tool to understand the final correlation strengths in terms of interme-
diate variables. In this sense it is an emerging phenomenon: when this regime is
realized, whatever the initial microscopic parameters, the final correlation strengths
will almost solely be determined by the respective orbital populations, which are
quasi-independent emergent variables. This correlation between variables on a hier-
archical level just above the purely microscopic one, may have an advantage in an
attempt of designing new materials with interesting emergent properties over, i.e.
tuning single hopping elements or distances and angles in the atomic structure.

In the following I will use previous and new results on model systems to ”reverse-
engineer” this result found in Fe-SC, break it down in simpler well understood re-
sults, and show that the orbital decoupling is indeed the mechanism at play.

This has a double utility. On one hand it validates the generality and robustness
of the phenomenon - that can indeed be found in a one-shot ab-initio calculation - to
the variation of microscopic parameters, such as the screened Coulomb interaction
strengths, whose estimates are still subject to a sizable uncertainty. On the other
hand it paves the way towards the conception of low-energy models, retaining all
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Fig. 2 Theoretical mass
enhancements of the con-
duction electrons by Fe-
orbital character, obtained in
DFT+Slave-spin mean-field
(SSMF[28, 29]) for doped
BaFe2As2 (lines) and at filling
of 5.5 electrons for the struc-
ture of KFe2As2 (squares).
The increase and spreading of
the orbitally-resolved corre-
lation strengths parallels the
experimental one reported in
Fig. 1. From [30].
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and only the essential elements in order e.g. to model the superconductive pairing
and the magnetic order (see chapter 13 by Z.-Y. Weng).

Finally I will briefly mention another result of Ref. [30] that is the analogy
between Fe-SC and high-Tc cuprates that can be traced based on the orbital-
decoupling mechanism. Indeed it can be shown within a certain theoretical approach
to the Hubbard model (the Dynamical cluster approximation, one of the cluster ex-
tensions of DMFT), that correlations differentiate in k-space following the same
dependence on the population of that part of the Brillouin zone, analogously to the
multi-orbital case. This suggests an intriguing and deep parallel between the phase
diagrams of the two kind of superconductors and the possible importance of selec-
tive Mottness for high-Tc superconductivity.

The plan of the chapter is the following. In Section 2 I will recall the basic fea-
tures governing the low-energy physics in FeSC, from the electronic structure to
the treatment and intensity of electronic correlations. In Section 3 I will discuss
the overall degree of correlation of the conduction electrons, outlining the central
role of atomic Hund’s coupling, highlighting the usefulness of the simple yet very
appealing Hubbard criterion for the occurrence of the Mott transitions. I will re-
call the large body of realistic calculations which include electron-electron corre-
lations explicitly and point out their main features, including the general tendency
towards orbital differentiation of the correlation strength. In Section 4 the exper-
imental evidences supporting the coexistence of more strongly and more weakly
correlated electrons in FeSC are gathered and analyzed in some detail, in the light
of realistic calculations and discussion of Ref. [30]. In Section 5 the mechanism
behind the differentiation of correlations, the Hund’s induced orbital decoupling, is
reverse-engineered in terms of the basic behavior found in simpler models, and in
the light of a generalized Hubbard criterion representing a stylization of the physics
of Hund’s metals in the regime near the Mott insulator realized at half-filling. In
Section 6 I go back to the realistic calculations illustrating how this cartoon applies
to the case of FeSC and use two ’wrong’ realistic calculations to point out the role of
the microscopic features of the bandstructure on the final result. Finally in Section
7 conclusions are drawn, and some of the issues left out of this chapter are briefly
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mentioned. Some further calculations analyzing the details of the orbital-decoupling
mechanism in models are reported in the appendix.

2 Essentials of the electronic structure of Fe-based pnictides and
chalcogenides

Iron-based superconductors are formed by stacked Fe-pnictogen or Fe-chalcogen
planes, with (for the former) or without (for the latter) filler planes providing
charges. The Fe atoms form a square lattice with the ligand positioned in the middle
of each square, alternatively above or below the plane. The formed structure has
tetragonal symmetry, which undergoes an orthorhombic distortion in proximity of
the magnetic phase.

Throughout the chapter we will focus on the normal tetragonal phase, that is
where superconductivity is realized, at low temperatures. In this structure the bands
cutting the Fermi level are mainly of Iron 3d orbital character with a sizable admix-
ture of the p-orbitals from the ligands. The bandwidth of this complex is around
4− 5eV , while the bonding bands, with predominant character of the ligand p-
orbitals, lie just below and extend for 3−4eV . The Fermi surface reflects the semi-
compensated metallic band structure of the low-energy complex, and hole pockets
are formed around the Brillouin zone center while electron pockets around the zone
corner1.

Albeit the DFT (in its most common Local Density Approximation - LDA, or
Generalized Gradient Approximation, GGA) bandstructure includes a mean-field
electron-electron interaction effect on the one-electron wave functions, in order
to incorporate the dynamical many-body correlations one way is to construct a
Hubbard-like low-energy model, in which local (multi-orbital) interactions are ex-
plicitly treated. In order to do this one has to construct a local basis (one typical
choice is using maximally localized Wannier orbitals) and re-express the bandstruc-
ture through a tight-binding model, on top of which one adds the Hubbard local
interaction terms. The static contribution of the electron-electron interaction is thus
counted twice and a double counting (interaction-dependent) energy has to be sub-
tracted.

Here, two choices are possible, customarily. One is to use a larger basis of local
orbitals, including explicitly both the correlated (i.e. on which the Hubbard term
will be acting) d-orbitals of main Fe character, and the non-interacting p-orbitals of
main ligand character, so that the tight-binding bandstructure reproduces the bands
over the whole (”large”) energy window of ∼ 8−10eV around the Fermi level EF .
In this formulation the local orbitals are very atomic-like, thus better justifying the
d-orbital Hubbard interaction terms, but the double-counting term, acting only on

1 Two conventions are typically used for the unit cell and the consequent Brillouin zone. Depending
on the convention used the electron pockets are centere either on the corner (e.g. (π,π)), or on the
side (e.g. (π,0)) of the Brillouin zone. The present discussion is independent of the convention
used.
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the correlated orbitals, alters the energy distance between the d and the p orbitals.
Drawbacks due this last issue have been highlighted lately, and different prescrip-
tions in order to fix it have been proposed. Then, albeit this formulation is in princi-
ple more realistic, the possibility of a completely ab-initio approach is still a matter
of ongoing research[33, 34, 35, 36, 37, 38].

In order to avoid this problem we will only discuss the alternative formulation
that uses a smaller basis of local orbitals, including only correlated d-symmetry
orbitals of main Fe character, so that the tight-binding bandstructures reproduces the
low-energy complex over a (”small”) 4-5eV window around EF . These local orbitals
are more extended in space compared to the ones in the large-window formulation
but the double-counting term is simply absorbed in the chemical potential that is
fixed by the choice of the conduction electron population. Thus the double counting
problem is altogether avoided. We will see that the reliability of this (a priori less
accurate) choice is justified in our case by the agreement with the experimental data.

The resulting 5-orbital model is populated by 6 electrons in the stoichiometric
Fe-SC and its tight-binding parameters have the main following features. The cubic
environment splits the orbital energies in a lower doublet (of eg symmetry) and an
upper triplet (of t2g symmetry). These are further split by the tetragonal symme-
try so that only the two t2g orbitals with lobes pointing out of plane (called xz and
yz) remain degenerate. Overall, however, these crystal-field splittings are one order
of magnitude smaller than the bandwidth, the orbital energies being spread over an
interval of 0.3−0.5eV . This implies that all 5 orbitals will participate to the conduc-
tion bands and to the Fermi surfaces, even if it is found that these are predominantly
of t2g character. As can be seen in the table in Fig. 2 the most important splitting is

LaFeAsO     BaFe2As2    KFe2As2     FeSe     FeTe 

      0.157           0.091                !"#"$%&          -0.095      -0.254  

      0.235                  0.266                 "#'()&            0.527        0.551  

      0.057                  0.055                !"#""*&          -0.04        -0.088  

} 
} 
} 

xy 
xz, yz 

z2 

x2-y2 

Crystal-field splitting (eV)                     compounds 

   orbitals   

Fig. 3 Crystal field splitting of the orbital levels in the tight binding parametrization of various
stoichiometric Fe-SC (technical details can be found in [30]).

between the t2g and eg multiplets, the intra-multiplet splittings are smaller and can
change sign across the compounds.

The table in Fig. 4 shows instead the main diagonal (i.e. conserving the orbital
nature) nearest-neighbor in-plane hoppings (next-nearest neighbor hoppings are of
the same order but tipically somewhat smaller). The main features to be highlighted
are that x2−y2 has larger in plane hoppings than z2 and most importantly that xz/yz
have larger in-plane hoppings than xy. The smallness of the xy−xy hopping has been
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Fig. 4 As in the previous
figure, but main diagonal
in-plane nearest-neighbor
hoppings. Notice that for xz
and yz orbitals these are very
directional, hence here the
t100
xz−xz = t010

yz−yz are reported.

LaFeAsO     BaFe2As2    KFe2As2     FeSe     FeTe 

        0.16            0.12                 0.16                0.05      0.06 

        0.34            0.32                 0.37                0.31      0.26 

        0.07            0.03                 0.03                0.00      0.06 

        0.32            0.33                 0.37                0.40          0.37  

xy 
xz, yz 

z2 

x2-y2 

main diagonal hoppings (eV)   compounds 

   orbitals   

related to the angle formed by the bonds between the Fe ion and the ligands in [1]. A
cancellation (named ”kinetic frustration”) happens between the direct and indirect
(i.e. through the ligand) amplitudes, reaching very small values in the chalcogenides
where the height of the ligand is maximal.

Inter-orbital hoppings are quite large, and connect all the 5 orbitals together form-
ing the intricate final bandstructure. Inter-plane hoppings are typically much smaller,
there is however a non-negligible band dispersion in the z direction due mainly to
the z2 orbital.

The Hubbard hamiltonian H = H0 +Hint used includes the tight-binding one-
electron part reading:

H0 = ∑
i j,ll′,σ

t ll′
i j c†

ilσ c jl′σ − ∑
i,l,σ

µc†
ilσ cilσ , (1)

where c†
ilσ and cilσ are the fermionic creation and annihilation operators acting on

site i, orbital l and spin σ and t ll′
i j is the hopping amplitude between orbital l on

site i and orbital l′ on site j. Hint describes the local multi-orbital electron-electron
Coulomb interaction and customarily the rotationally invariant Kanamori Hamilto-
nian is used, that reads

Hint=U ∑
il

nil↑nil↓+(U−2J) ∑
i,l>l′,σ

nilσ nil′σ̄ +(U−3J) ∑
i,l>l′,σ

nilσ nil′σ

−J ∑
i,l 6=l′

[
d†

il↑dil↓d
†
il′↓dil′↑+d†

il↑d
†
il↓dil′↑dil′↓

]
, (2)

where nilσ = c†
ilσ cilσ , U is the strength of intra-orbital Coulomb repulsion, U −

2J that of the inter-orbital one, and J is the Hund’s coupling. This form, which
is exact separately for a t2g and a eg multiplet [39], is a common approximation
for a 5-orbital 3d shell. Moreover in a realistic framework the matrix elements are
in general orbital-dependent. However no result in the Fe-SC framework has been
reported in the author’s knowledge, where these differences play a major role, and
the discussion of these terms is beyond the scope of this chapter where a reductionist
approach is adopted. Another commonly used approximation is dropping the last
two terms in (2) and keeping only the density density terms.

A full discussion of the ab-initio estimates of U and J can be found in [40]. We
report the orbitally-averaged values of U and J estimated in that work by T. Miyake
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Fig. 5 Orbitally averaged ab-
initio interaction parameters
for various Fe-SC. Adapted
from [40].
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et al. in Fig. 5. It can be noted that U ∼ 2.5− 4eV and J ∼ 0.35− 0.5eV , with the
maximum values reached in the chalcogenides.

3 Overall correlation strength: the ”Janus” effect of Hund’s
coupling

By looking at the energies at play in Fe-SC low-energy physics as outlined in the
previous section one may naively vouch for a weakly correlated regime[5]. Indeed
the Hubbard repulsion U is smaller than the total bandwidth W , which is the usual
zeroth-order rule of thumb to assess the correlation strength in a Hubbard-like sys-
tem. This criterion complies with obvious energetic arguments (the kinetic energy,
roughy measured by the bandwidth is opposed by the interaction energy, measured
by U) and most concretely is tailored around the simplest estimate of the critical in-
teraction strength Uc needed to have a Mott insulating state in the half-filled single-
band Hubbard model.

This strong-coupling argument, due to Hubbard himself [41] and illustrated in
Fig. 6, is based on the fact that the excitation spectrum of a Mott insulator is roughly
the atomic-limit spectrum broadened by the hopping amplitudes, and it describes the
atomic charge excitations that can incoherently propagate through the system. In the
single band model then it is mainly formed by two ”Hubbard bands” at distance U
(the atomic excitation energy) from one another (and symmetrically placed around
the zero-energy point in the particle-hole symmetric half-filled case) that can be
shown to disperse on an energy range W . Then an insulator-to-metal transition is
obtained when U is reduced to a point that the two bands overlap, the gap closes and
spectral weight is brought back to zero energy. This yields Uc =W in the single-band
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case. At any U > Uc a metallic state can also be restored by doping: in this simple
picture this is equivalent to bringing the chemical potential, across the gap, into
the Hubbard bands, where quasiparticle states are then created. In the proximity of
these Mott transitions the metallic state is expected to be strongly correlated (mean-
field studies show that the quasiparticle weight Z vanishes as |U −Uc| below the
transition and proportionally to carrier doping above Uc[42, 43, 44, 45])

!!"#

W̃W̃

Fig. 6 Hubbard bands emanate from the atomic excitation spectrum. They are spread apart fol-
lowing the atomic Mott gap ∆at (i.e. the sum of the energies needed to create a particle excitation
and a hole excitation), and are broadened by an effective bandwidth W̃ . In the single-band Hub-
bard model ∆at =U and W̃ =W . Here depicted is the half-filled case in the Mott insulating phase
U >Uc. The dark color represent ”filled states” (the extraction part of the spectrum).

In a Hubbard model of M degenerate orbitals, where Mott transitions can happen
at any integer filling, the effective kinetic energy is enhanced by orbital fluctuations
(the Hubbard bands disperse on an energy range W̃ ∼

√
MW ), thus increasing the Uc

[46, 47, 48, 49]. At fixed interaction strength, correlations are reduced accordingly
and this is the reason, for instance, believed to account for the metallic state of the
3-fold degenerate system A3C60 (A=K, Rb) in which U ∼ 1.5W , thus substantially
larger than the bare bandwidth [47].

Thus applying naively the generalization to 5 orbitals of the Hubbard criterion
(where Uc = W̃ ∼ 2W ) one may conclude that Fe-SC, in which U is well below
this estimate, are weakly correlated. However one should refrain from assessing the
correlations of the metallic state based solely on the comparison of the interaction
strength U and the bandwidth W, even in a simplified treatment, for two reasons.
First, because as we will see a third scale, the Hund’s coupling J, plays a major
role, not least in modifying the Hubbard criterion itself. Second because, albeit in
the proximity of a Mott insulator one can expect a metallic state to be strongly
correlated, outside this range the Hubbard criterion is not necessarily useful and
one has to rely on more quantitative approaches. A more reliable method in this
respect is DMFT that can describe both the metallic and insulating phases on the
same footing.

In the dynamical mean-field language[50] a site in the lattice system is described
as a quantum impurity exchanging electrons with an effective bath that represents
the rest of the system. The metallic phase corresponds to the Kondo-screening of
the local moment induced by the local interaction and the Mott transition is then
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described as a screening/unscreening transition. In the screened phase the impurity
model (and hence the lattice system) has a local Fermi-liquid self-energy, and the
degree of coherence of the corresponding quasiparticles (and hence the mass of
the correlated electrons) in the metal is characterized by the Kondo temperature
TK ∝ exp(−1/[2ρJK ]), where ρ is the conduction-electron density of states per spin
at the Fermi energy and JK is the antiferromagnetic Kondo coupling. This effective
coupling is due to the exchange energy gained in the processes of resonant scattering
of the conduction electrons on the impurity2.

The aforementioned increase in kinetic energy for a degenerate system of M or-
bitals corresponds here to an increase of the effective Kondo coupling JM

K,e f f =MJ1
K ,

since the impurity can exchange with the bath both spin and angular momentum, and
this facilitates the screening. The consequent increase of the Kondo temperature is
reflected in an increased overall coherence of the conduction electrons[52, 53, 54].

However Hund’s coupling strongly modifies this picture. Indeed the effect of
this coupling is to favor, among the many atomic degenerate states with a given
total charge, those with a larger total spin S, and among these the ones with larger
total angular momentum L. This considerably lowers the degeneracy of the ground
state, and thus the channels for exchange processes with the bath, and ultimately the
effective Kondo coupling.

For instance at large J for a half-filled shell the effect is maximal and JM
K,e f f =

J1
K/M [54]. The reduction of M2 in this case compared to the enhanced case without

Hund’s coupling is understood intuitively, due to the complete quenching of the
angular momentum (the multiplet of maximum S is bound to have L = 0 in a half-
filled shell): the factor M of enhancement compared to the single-orbital case is lost
since orbital exchange is blocked, and another factor 1/M is due to the reduced spin
exchange due to the selection of the high-spin multiplet for a ground state[55, 56].

For a shell with M± 1 filling (which is the case of stoichiometric Fe-SC) spin
and orbital exchange channels at fixed valence have to be considered, ultimately still
leading to a strong reduction of the TK , similarly to the half-filled case [54, 21, 57].
Valence fluctuations could add even further complexity to this analysis. However it
is clear that for shells near or at half-filling Hund’s coupling has a strong effect in
reducing the coherence scale of conduction electrons in the metallic phase (a more
thorough discussion of these topics can be found in Ref. [39]).

This strengthening of correlations could in principle simply favor a Mott insulat-
ing state, however this is not true in general. In fact besides this low-energy effect
Hund’s coupling has another influence on the system, stemming directly from the
high-energy atomic features of the spectrum. Indeed Hund’s rules are first and fore-
most an atomic effect, and the selection of the low-lying multiplets in each sector
with a given total atomic charge has also an effect on the atomic Mott gap. The
gain in energy due to J in every charge sector is different, thus the corresponding

2 For the Mott transition, an intuitive connection between the screening/unscreening process and
the Hubbard criterion is made by the self-consistent nature of the effective DMFT bath. When the
low-energy coherence is too low, it is convenient for the system to lower the energy of the low-
lying filled states by opening a gap at the Fermi energy (ρ = 0) and form a Mott insulator, which
is self-consistent because when ρ = 0, TK = 0 (for a discussion see e.g. [51])
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Mott gap is modified differently. In practice the half-filled sector is the one that
has the maximal gain in energy, and hence the Mott gap for a half-filled shell is
∆at =U +(M−1)J and is always enhanced by J. For all other fillings however the
gap value is ∆at =U−3J and is actually reduced by Hund’s coupling[58, 59].

Given the aforementioned relation between the atomic spectrum and the one of
a Mott insulator, one can again apply a Hubbard-like criterion (Fig. 6) and see that
in the half-filled case the opening of a Mott gap will be favored by J (and Uc will be
reduced), while in all other cases the Mott insulating state will be pushed away at
very high Uc [32]3.

single electron or hole in the shell half-filled shell generic filling – “Janus case” 

Fig. 7 Influence of Hund’s coupling (grey arrows) on the quasiparticle weight in a (here - particle-
hole symmetric, 3-orbital) degenerate Hubbard model. Three cases are possible depending on the
filling. At half-filling (right panel) the Mott insulating state is strongly favored, for a filling of
a single electron or hole (left panel) the metallic state is favored. For all other fillings (middle
panel) coherence is reduced but the Mott insulator is disfavored, stabilizing a strongly-correlated
(typically bad-metallic) phase for a large range of parameters. Adapted from Ref. [60] (these results
hold analogously for a 5-band Hubbard model [27]).

For half-filled systems this effect collaborates with the reduced Kondo screening
in enhancing correlations and favoring strongly the Mott insulating state[61] (right
panel in Fig. 7). However for all other filling the two effects are antagonistic to
one another4. This case in which Hund’s coupling has two antagonistic effects was
nicknamed after the double-faced god ”Janus” from the roman mythology in Ref.
[60].

In the ”Janus” case, when J/U is sizable, correlations are quickly enhanced by
interactions and the system acquires a low coherence temperature and large mass

3 Indeed it is found numerically that the values of Uc at large J scale well with ∆at [32]. It can
be shown (at least in specific cases) that at large J the effective width of the Hubbard bands W̃
tends to a constant (the single-band value W̃ 'W for the half-filled case - de’ Medici and Capone,
unpublished) owing to the quenching of orbital fluctuations. At small J instead orbital fluctuations
are still active and their reduction with J (and the consequent reduction of W̃ (J)) dominates over
the tuning of ∆at(J). Thus while in the half-filled case the two effects add up, causing an even
faster reduction of Uc, in the ”Janus” case (see the main text) they work against one-another (not
surprisingly, since the reduction of W̃ is related to the loss of kinetic energy due to the reduction
of the TK) causing an initial decrease of Uc before a strong increase.
4 In the limiting case of a shell populated by only one electron or one hole per site however, the
low-energy effect of Hund’s coupling is absent, so that the correlation strength is simply reduced
following the enhancement of Uc (left panel in Fig. 7)
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enhancement already at quite low values of U. However the Mott insulating state is
pushed away, since Hund’s coupling keeps the Hubbard bands from spreading apart
and thus forces spectral weight to low energy, even if with reduced coherence. This
state is realized for a large range of interaction strength and the quasiparticle weight
Z(U) shows the typical S-shaped form of the middle panel of Fig. 7.

Fig. 8 Quasiparticle weight (color code) as a function of filling and interaction strength U at fixed
J/U=0.2 (see footnote 5 for the realistic J/U value) for a 5-band degenerate Hubbard model (the
bands have semi-circular densities of states of half-bandwidth D) solved within slave-spin mean-
field. Even if this model does not take into account the specificities of the band-structures of the
Fe-SC, it gives nevertheless an idea of the proximity of the Mott transitions (signaled by the black
bars) to the realistic range of parameters for Fe-SC (gray square, values of U are normalized to the
bare Kinetic energy of the bandstructures in order to be compared to this model calculation).

It can also be shown that the Janus effect is more and more pronounced with
increasing number of orbitals M ≥ 3[60, 27], and it is the strongest when M± 1
electrons populate M orbitals (because this is the case with the strongest reduction
of coherence among those in which the Mott insulator is disfavored), which is the
case of stoichiometric Fe-based pnictides and chalcogenides, these materials bearing
6 electrons in 5 orbitals.

The complete phase diagram for a 5-orbital degenerate Hubbard model (with
half-bandwidth D) as a function of filling and interaction strength is reported in
Fig. 8. This calculation is performed for a fixed ratio J/U in the proper range for
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Fe-SC within this method5 and in the figure a square shows the realistic range for
the Fe-SC, (filling from 5.5 to 6.2, and U from Fig. 5 converted in units of the
Hubbard model by matching the bare kinetic energies of the model and of the band-
structures).

From this analysis it is clear that stoichiometric Iron superconductors are in some
sense far from the Mott transition for 6 electrons in 5 orbitals, which happens at
a much higher interaction strength (even if instead of J/U one keeps J fixed to
the estimated value and raises only U). However these materials are nowhere near
weakly correlated. Indeed even if far from the Mott transition at n=6, they are deep
enough in the Janus phase, so that their quasiparticle weight is strongly reduced by
Hund’s coupling. The effect of pushing away the Mott phase makes that this is not
a result of fine tuning, but is very solid to any variation of the physical parameters,
be it intended both as an error bar on the theoretical estimates and as a variability
among different materials.

Indeed this simple model does not take into account the realistic band-structure
of Fe-SC (like the crystal-field splitting of orbital levels, which partly contrast the
effect of Hund’s coupling) but as ab-initio calculations show it captures very well
the physics, as far as the overall correlation strength is concerned.

Realistic ab-initio calculations including the many-body correlations on top of
DFT band-structures have indeed been performed from the outset (see the list of the
different used methods in the introduction [1, 3, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 63].) and fit very well into this global picture.

All of them regardless of the fine details point to a moderate to strong overall cor-
relation strength. In Fig. 9 I report two of them, realized with methods numerically
light enough to perform a full scan of the interaction strength (at fixed J/U , cus-
tomarily). These calculations realize, in specific cases, the general salient features
of the Janus phase, and of Hund’s metals:

• moderate to strong electronic correlations are realized (panel b on the left, top
panel on the right), even far from the Mott insulator that is realized at very high
interaction strength at this filling,

• interorbital spin-spin correlations are strong, the high-spin state (S= 2) is quickly
predominant when inside the Janus phase (right, second panel from the top),

• Hund’s coupling favors the high-spin state by redistributing the orbital popu-
lations (right, second panel from below), by bringing the effective interacting
orbital levels at roughly the same energy (right, third panel),

• interorbital charge-charge correlations are suppressed (right, bottom panel).

A few further annotations are important at this point:

– Albeit at strong Hund’s coupling the high-spin is realized, the crystal-field split-
ting of the orbital levels competes with it, favoring low spins. The low-to-high

5 Indeed following the c-RPA estimates reported in Fig. 5 one finds J/U ' 0.12− 0.16. In or-
der to properly implement this value in the semi-quantitative slave-spin mean-field approximation
(SSMF), they have to be slightly enhanced. In practice in order to match the Uc’s for the Mott tran-
sitions for J/U ' 0.15 in DMFT with Kanamori interaction corresponds to J/U & 0.2 in SSMF
with density-density interaction (for Uc in a 5 band model in DMFT see Ref. [62]).
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Fig. 9 Left: LDA+ Slave-spin calculation for LaFeAsO DFT band-structure for weak (upper panel)
and strong (lower panel) Hund’s coupling (adapted from Ref. [23]). The quasiparticle weight Z(U)
(here resolved by orbital nature) assumes typical S-shaped curves of the Janus effect at strong
Hund’s coupling. Right: LDA+Gutzwiller analogous calculation for FeSe, from ref. [27]. It is to be
noticed that the Janus phase is accompanied by the increase of inter-orbital spin correlations (i.e. a
high-spin local moment is formed owing to the increase of J) and a suppression of the inter-orbital
charge ones.

spin crossover happens at interaction strength quite near the actual realistic val-
ues for Fe-SC. This appears on the Z(U) curves as a very quick drop of coherence,
which signals that the system enters the Janus/Hund’s metal phase, in which the
correlations are enhanced by the high-spin state. The position of this boundary
depending on J, this explains the strong dependence on J of the coherence sig-
naled in Ref. [3].

– Once the high spin state is realized one can consider the overall correlation
strength described by the diagram in Fig. 8. It is quite noticeable that the Mott
transition at half-filling influences most part of the phase diagram. In particular,
for an extended zone in the interaction range Un=5

c .U �Un=6
c and for fillings

around half, i.e. 4 . n . 6, the correlation strength is rather independent of both
U and J. The low coherence scale is rather set, for a quite extended range, by
the doping from the Mott insulating state realized at half-filling, in a way that
reminds the doped Mott insulator in the one-band case.
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– The overall very reduced quasiparticle weight is reflected in a low coherence
temperature of the metal. The phase just above such a coherence temperature
was named in Ref. [64] ”spin-freezing” phase, characterized by persistent in time
spin-spin correlations and anomalous self-energies with low-energy power-law
frequency dependence.

– Finally one can notice that in the Hund’s metal phase there is an increased ten-
dency towards a differentiation of the correlation strength among the electrons in
the various orbitals.

In the following I will show that this differentiation of the correlation strength
among orbitals is not the result of fine tuning, or of peculiarities of the electronic
structure, but a solid character of the Hund-dominated metals, as first put forth in
Refs. [8, 32]. I will show that this differentiation is tied to the dominance of the
half-filled Mott-insulator even on filling ranges quite far from half and that this
leads consistently to the coexistence of weakly and strongly correlated electrons in
these materials, supported by a wide range of experiments.

4 Orbital-selective Mott physics: experimental and ab initio
evidences

Several experiments point in favor of a coexistence of multiple electronic compo-
nents with different degrees of correlation/localization.

Multiple components in optical conductivity data in the Drude/MIR range[65,
66]) as well as in magnetotransport[67] reported for doped 122 pnictides were
interpreted as a sign of more itinerant and more localized electrons coexisting,
while ARPES studies[68, 69] highlighted a strong Fermi-sheet dependence of the
Fermi velocities. A strong orbital-dependence of the superconducting gap with hole-
doping was pointed out in Ref. [70], leading to a disappearance of only one gap in
superconductive Ba0.4K0.6Fe2As2

In Iron chalcogenides NMR and EPR[71] and neutron scattering measurement[72]
were intepreted as showing the presence of intrinsic local magnetic moments in
the metallic non-superconducting phase, coexisting then with itinerant electrons.
ARPES[73] detected strong orbital differentiation and in particular stronger corre-
lations for the xy orbital in FeSe0.42Te0.58 and a study[74] the intercalated chalco-
genides AxFe2−ySe2 (A=K, Rb) reported the disappearance of the band of xy-
character when the temperature is increased above ∼ 150K, thus signaling the
orbital-selective Mott transition of the most correlated electrons. This was confirmed
by THz spectroscopy[75].

K − β fluorescence XES measurements[76] showed the presence of localized
moments on the Fe 3d-shell due to the strong electronic correlations, thus illustrating
the double nature of the electrons in the metallic phase.

These scattered works within the contrasting evidences on the overall correla-
tion strength (as briefly recalled in the introduction and summarized e.g. in Ref.
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[77]) could not precisely clarify the role of electronic correlation and its selectivity,
though.

More recently however, a main trend within the most studied family of doped
BaFe2As2 was individuated in Ref. [30], combining a theoretical study of the or-
bitally resolved correlation strength in these compounds, and a survey of the exper-
imental mass enhancements as estimated by different techniques, for the tetragonal
paramagnetic metallic phase.

The compilation of such mass enhancements, from low-temperature specific
heat, optical conductivity, ARPES and quantum oscillation measures, is reported
in Fig. 1 (technical details can be found in the supplementary online material of
Ref. [30]). What is found is a rapid increase with reducing filling of the mass en-
hancement estimated by the ratio of the measured to theoretical (as calculated from
DFT) Sommerfeld coefficient of the low-T linear contribution to the specific heat.
Instead the reduction of the estimated Drude contribution within the optical conduc-
tivity spectrum does not quite follow, showing a more moderate mass enhancement
rather saturating with hole doping.

Fig. 10 Upper panel:
orbitally-resolved quasiparti-
cle weight as a function of the
total conduction-band filling
n for doped BaFe2As2 (lines)
and KFe2As2 (squares), as
calculated with DFT+SSMF
(in this mean-field context the
quasiparticle weights are the
inverse of the mass enhance-
ments reported in Fig. 2). It is
to be noticed that no sign of
the commensuration is found
at the stoichiometric filling
n = 6. A Mott insulator is
realized instead for half-filled
conduction bands (n = 5).
Lower panel: corresponding
orbital populations. From
[30].
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This was interpreted in the light of theoretical calculations of orbitally-resolved
correlation strength, performed within DFT+Slave-spin mean-field (Figs. 2 and 10),
in the same work Ref. [30]. These show, in agreement with previous studies[18, 26,
22] an asymmetry of the degree of correlation upon doping around the stoichiomet-
ric filling of 6 electrons/Fe. Indeed the theory indicates that correlations increase
monotonically with reducing filling in the tetragonal paramagnetic metallic phase
of the 122 materials, in a continuous trend that goes from the electron-doped to the
hole-doped part of the phase diagram. Interestingly the correlation strength does not
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evolve identically for all electrons: those in the t2g orbitals (and in particular in the
xy) are renormalized more strongly than those in the eg’s. This differentiation of
the mass enhancements grows with hole doping and culminates for the end member
KFe2As2, for which they range from ∼ 2.5 (for the eg’s) to ∼ 14 (for the xy).

This increasing spread among the electron effective masses is expected to result
in a stronger renormalization of the Sommerfeld coefficient γ/γband (where the band
subscript refers to the unrenormalized value from band theory) compared to that
for the Drude part of the optical conductivity Dband/D. Indeed the former is propor-
tional to the total density of states at the Fermi level, which is a sum over the band (or
orbital) index α of the bare contributions enhanced by factors (m∗/mband)α (where
mband is the bare band mass). The latter is instead a sum of contributions renor-
malized by the inverse factors (mband/m∗)α . Thus γ/γband = Dband/D only if the
renormalization is the same for all orbitals (bands). In the opposite case of strong
differentiation of the factors (m∗/mband)α , they will diverge from one another: as it
happens for a series or a parallel of resistances, the Sommerfeld coefficient will be
dominated by the heavier electrons, while the Drude part from the lighter ones. This
is exactly what one observes in the experiments reported in Fig.1.

This analysis is confirmed by ARPES and quantum oscillation measurements,
which are band selective probes. Indeed the mass renormalizations of the different
fermi surfaces estimated by these techniques are concentrated in the range 1.5÷3 in
the electron-doped compounds, while they spread more and more with hole doping,
reaching extreme differentiations (in the range ∼ 2÷20) in KFe2As2.

These consistent evidences strongly support the existence of weakly and strongly
correlated electrons in the whole phase diagram of the 122 family, the differentiation
being tuned by the carrier doping and reaching extreme values at the end member
with the lowest filling of 5.5 electrons/Fe.

It is remarkable that the stoichiometric filling (6 electrons/Fe) does not represent
a special point for correlations. Half filling (5 electrons/Fe) is one, instead , because
if the compound could be hole-doped to that point it would become Mott insulat-
ing6. This is not actually possible, because the usual K substitution can only reach
a filling of 5.5 electrons/Fe, for the end member KFe2As2 (however a very similar
compound having a half-filled shell and similar electronic structure, BaMn2As2, is
interestingly an insulator[78]). Nevertheless, the calculations indicate that the influ-
ence of this Mott insulating state extends to the whole range of filling of interest for
iron pnictides (i.e. up to and even beyond 6 electrons/Fe).

It is of great interest, in the view of the author, to show that the two previous
aspects, the selectivity of correlations and the influence of the half-filled Mott in-
sulator, are not specificities of the particular system under examination, but rather

6 Here I refer to an ideal electrostatic doping, i.e. to a simple shift of the overall filling. Indeed
the actual chemical doping is effectuated through atomic substitution, that modifies also the bare
bandstructure. This is also true for KFe2As2, and indeed in Figs. 2 and 10 the calculations for
the actual DFT bandstructure of KFe2As2 are reported (squares) together with those for doped
BaFe2As2 (i.e. in the so-called ”virtual crystal approximation”). The two calculation differ mainly
because KFe2As2 has a larger bare bandwidth. For both bandstructures however a Mott insulator is
realized at half-filling for the chosen values of U = 2.7eV and J/U = 0.25 (cfr. Fig. 5 and footnote
5).
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generic features of materials with conduction bands issued by nearly half-filled 3d
shells and strong Hund’s coupling, and can be understood in terms of the basic fea-
tures of simpler models, which will be done in the next section.

5 Orbital decoupling, the mechanism of selective Mottness

We have shown in Section 3 that some of the prominent features found in the re-
alistic calculations for Fe-SC are already present in a simple Hubbard model of 5
degenerate orbitals giving rise to 5 degenerate bands with featureless semi-circular
densities of states. Indeed in this simple model (see Fig. 8) a Mott insulator is real-
ized at half-filling for interaction strengths in the realistic range for Fe-SC, and its
influence extends over a large part of the phase diagram.

We will analyze this model further here, and show that the origin of the extended
(in doping) range of influence of the Mott insulator is the same than for the tendency
to differentiated correlation strengths among the orbitals once their degeneracy has
been removed. It is the emergent mechanism that we call ”orbital decoupling”.

Indeed in Fig. 11 beside the quasiparticle weight (left panel, reporting the right
half of Fig. 8), the inter-orbital charge-charge (central panel) and ferromagnetic
spin-spin (right panel) local correlations are reported, as a function of the interaction
strength (at large J/U) and total filling for the fully degenerate 5-orbital Hubbard
model. What I want to single out here is the contrast between the monotonic behav-

quasiparticle weight charge inter-orbital correlations spin inter-orbital correlations 

Fig. 11 Quasiparticle weight (left panel), inter-orbital charge charge (center) and ferromagnetic
spin-spin (right) local correlations, for a 5-band degenerate Hubbard model at fixed J/U = 0.2.
The Mott insulator realized at half-filling is indicated by the black bar in the left panel. The grey
square shows the realistic range of interaction and filling for Fe-SC (see also the caption in Fig. 8).

ior in doping of the spin-spin correlations, that show the progressive build-up of the
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local moment, in approaching the hig-spin (S = 5/2) realized in the Mott insulator
at half-filling, and the non monotonic behavior of charge-charge correlations. In-
deed these show a large suppression in a wide area around the Mott insulating state,
extending (in particular for the realistic interaction strength for FeSC indicated by
the grey square) to and beyond the stoichiometric filling for FeSC of 6 electrons/Fe.

This emergent behavior is a sign of what has been called orbital-decoupling in
Ref. [30] (or band-decoupling in Ref. [32]), and is an implication of the high-spin
Mott insulator realized at half-filling in presence of strong Hund’s coupling. The
suppression of the orbital susceptibility in the 2-orbital half-filled Mott insulator in
presence of strong Hund’s coupling had already been reported in Ref. [79]. This
behavior implies that the charge excitations in the different orbitals are largely in-
dependent, and remarkably this independence survives a considerable amount of
doping. Charge excitations are the basic object of Mott physics and tune the correla-
tion strength in the proximity of a Mott insulator. Being independent in each orbital
this gives way to independent tuning of the correlation strength in each orbital, once
the perfect symmetry between the orbitals of the model is removed.

Indeed if a crystal-field splitting is introduced in the previous model, where one
orbital is kept half-filled, while the others are lowered in energy (remaining degen-
erate) and filled until reaching the overall stoichiometric population of 6 electrons in
5 orbitals, the phase diagram of the model becomes the one reported in Fig. 12: an
orbital-selective Mott state is created, where the electrons in the half-filled orbital
keep a gap to the charge excitations and form thus a Mott insulator, while electrons
in the remaining orbitals delocalize and create a metallic state[9].

Fig. 12 Phase diagram of a
5-band Hubbard model (for
J/U = 0.25) in presence of
a crystal-field (as sketched in
the inset) lowering in energy
4 out of 5 orbitals. The total
population is fixed to 6 elec-
trons, while the crystal field
is adjusted so that the upper
orbital is kept half-filled. An
orbital-selective Mott state is
found, beyond a critical J/U ,
between a metallic phase at
weak coupling and a Mott
insulator at strong coupling.
From Ref. [9].

The one reported here is only one example of orbital-selective Mott transition
(OSMT, the extreme case of selective differentiation in correlations, where electrons
in subset of orbitals are localized while others remain itinerant) promoted by Hund’s
coupling found in many models in recent studies (see Section 6.6 of Ref [39] for a
discussion and reference list).
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The majority of these can be understood using a simple cartoon construction of
the orbitally-resolved spectral functions, as shown in Fig. 13. From top to bottom
the spectral functions are schematically constructed following a simple procedure:

a) One starts from a caricature of a half-filled multi orbital Mott insulator. Fol-
lowing the atomic spectrum two ”Hubbard bands” exist at a distance set by the
atomic Mott gap ∆at (=U +(M−1)J, for an M-orbital Hubbard model at half-
filling). The strong Hunds coupling ensures that the orbitals are individually half-
filled in the Mott insulating state.

b) these Hubbard bands disperse independently for each orbital α , on a range set
by the bare bandwidth W̃α associated to each orbital (we suppose that the hopping
integrals are diagonal in the orbital index for the moment). This independent
dispersion happens thanks to the decorrelation of the charge excitations due to the
orbital decoupling mechanism. An early strong-coupling argument explaining
the independence of Hubbard bands was given in Ref. [80].
Applying an orbital-selective version of the Hubbard criterion, some orbital can
have overlapping Hubbard bands, while others can have an open gap, indepen-
dently. Depending on the different combinations of open or closed gap dues to the
bandwitdths associated to the different orbitals, the system can be in the metallic,
orbitally-selective Mott or Mott insulating state, at half-filling. This is the case of
the ”standard model” for OSMT studied in many works (a two-orbital Hubbard
model with different bandwidth - see Ref. [81] for an extensive list of references).

c) The vanishing orbital susceptibility implies a rigidity of the Hubbard bands
upon orbital energy shifts. Thus the bands are shifted relatively to one another
by the crystal-field splittings ∆αβ if present. This alone, is another way to realize
an OSMT[8, 62, 32], if an orbital is shifted enough in energy in order for one
of his Hubbard bands to reach zero energy (while keeping an open gap away
from it), while the rest of the system has a still an open gap at the chemical
potential. Among the metallic bands it is found that the correlation strength is
set by the proximity of each orbital to individual half-filling[32]. The behavior
of each orbital reminds that of a single-band doped Mott insulator in which the
quasiparticle weight grows linearly with doping (see section 3).

d) Panel d) in the Fig. 13 depicts the general case, where both bandwith differ-
ences and crystal field splittings contribute to the generation of displaced inde-
pendent gaps for the different orbitals. Beside that mentioned in c) a general
rigidity applies to the whole spectrum due to the vanishing compressibility of the
Mott insulator. Thus the chemical potential µ can be moved and the whole spec-
trum shifts rigidly. Hence µ can lie within the Hubbard bands of some orbitals,
while still being in the gap for the remaining orbitals. In this situation the sys-
tem is necessarily doped away from half-filling and in an orbitally-selective Mott
state[80, 79, 82, 83]. After a certain critical doping, when the chemical potential
exits the last open gap, the system recovers a normal metallic phase[8].

e) Finally upon onset of hybridization (local and/or non-local hoppings) between
the different orbitals it has been shown that the present cartoon is slightly
smoothed (the gaps can be rounded in pseudogaps, or replaced by a heavy-
fermionic metallic phase with very low compressibility replacing the incom-
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pressible plateau in the orbital resolved spectral functions[84, 28, 85]), but the
general structure of this cartoon is preserved.

Fig. 13 Cartoon of a general
mechanism for Hund’s pro-
moted orbital-selective Mott
transitions and selective Mot-
tness (see text). a) Spectrum
of a degenerate half-filled
Hubbard model; b) Orbital
selective Mott phase triggered
by a difference in bandwidths;
c) Orbital selective Mott
phase triggered by a lifting
of degeneracy of the orbital
energies due to crystal-field
splittings; d) General situa-
tion with both the previous
effects combined, OSM phase
due to doping; e) Onset of
hybridization compared to
d), transforming an orbital-
selective Mott phase in a
metallic phase with orbital-
selective Mottness.
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A word of caution concerning this stylized general cartoon that I have given of
Hund’s dominated doped Mott insulators is in order. It is intended to describe the
gross features of the orbital-resolved spectra (mainly the location and width of the
gaps and the structure of the spectrum close to the gaps, not the spectrum at high
energies) and the main changes of the local physics under tuning of the most im-
portant knobs in the system: chemical potential, crystal-field splitting, bandwidths
associated to the different orbitals (the last is intended as the effective quantity W̃α

defined in Section 3, which, if not coincident with the bare Wα , should at least scale
with it). It neglects all specificities coming from the k-space structure of the bands
(nesting, Van-Hove singularities, direct or indirect gaps in the bandstructure, etc.).
Also it is not expected to be valid too far from the half-filled Mott insulator, in the
sense intuitively defined by Fig. 8 and discussed at the end of Section 3. Finally,
as discussed for the crystal-field in section 3, also hybridization, if large enough,
can reduce the effect of Hund’s coupling, and even bring the system to a low-spin
state. The cartoon given above, and more generally the whole analysis given in this
chapter, are founded on the assumption that Hund’s coupling dominates over both
crystal-field splittings and hybridization. These are then treated as perturbations of
the picture given for degenerate and non-hybridized orbitals, and when this hierar-
chy is inverted the present picture does not apply.

It is easily checked that most of the OSMT studies can be interpreted in the
light of the cartoon given above. Among the many aspects that one can highlight,
it is quite revealing for instance that the orbital-resolved spectra in models with
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featureless bands are quite similar among them, and simply shifted from one another
in presence of crystal field splitting[8, 32]) or different only in the width of the
Hubbard bands when the gaps are opened in models with no crystal-field splitting
but different bandwidths[80, 84].

6 Back to realism: FeSC and two ’wrong’ (yet instructive)
calculations

The last snapshot of Fig. 13 is the identikit of the situation found in FeSC in
Ref.[30]. Indeed this can be seen quite explicitly7 in the lower panel of Fig. 10,
where the orbital populations nα as a function of the total filling are shown. These
are quite obviously the outcome of a spectrum like the one sketched in the lowest
panel of Fig. 13 (the populations being obtained by integration of the orbitally-
resolved spectral densities up to the chemical potential).

Moreover a very revealing feature is the fact that the orbitally resolved quasi-
particle weights (Zα , upper panel of Fig. 10), mirror this very trend. Indeed when
plotting, for each orbital, the quasiparticle weight as a function of the population
of that orbital Zα(nα), one finds a remarkably linear behavior, as shown in Fig. 14.
This shows clearly that the correlation strength for the electrons in each of the or-
bitals is almost solely set by the proximity of that orbital to half-filling, and thus that
each orbital behaves quite independently as an individual doped Mott insulator in
which, as reminded earlier on, the mean field Z is proportional to the doping from
half-filling. In particular it is found that for stoichiometric BaFe2As2, the t2g orbitals
are already deeply in this Z-linear regime of orbital-selective Mottness (while the eg
orbitals will enter it eventually, upon hole-doping).

This selective Mottness can be regarded as an emergent phenomenon in that the
direct effect of the specific microscopic features of the model - such as the start-
ing orbital populations, or crystal-fields, or the size of specific hopping integrals,
as determined by the geometry of the lattice and symmetry of the orbitals - on the
correlation strength found in each orbital is quite hard to disentangle. However the
relationship with the ”intermediate” quantity (meaning that it cannot be indepen-
dently tuned, but it is rather determined by all the previous factors combined in a
non-trivial way) that is the final orbital population (i.e. as found in the fully interact-
ing system) is instead direct, and easily shown to be the most relevant one. Moreover
this happens upon entering the zone of reduced inter-orbital charge correlation near
the Mott insulating state. These correlations are a non monotonous function of U
and J (at fixed U/J), as shown already in the degenerate model (Fig. 11) and con-
firmed explicitly in the realistic calculations (see supplementary material of Ref.

7 The best discussion of the relevance of the proposed cartoon for the physics of FeSC would be to
calculate explicitly the spectra which are meant to be stylized by the cartoon. However, detailed,
reliable, low-temperature orbitally-resolved real-axis spectra are not yet easily obtained by state-
of-the art DFT+DMFT techniques. We thus rely to the integrated spectral weight giving the orbital
populations, much more easily and reliably available in SSMF (as well as in DMFT).
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that each orbital behaves as an individual doped Mott insulator. Comparison with an analogous
decoupling found in the DCA calculations for the bidimensional Hubbard model from Gull et al.
Ref. [86] is reported (see text). From Ref. [30].

[30]). This surprising reduction of these charge correlations upon increase of the
interaction strength is a direct signal of the complexity involved in the relationship
between orbital decoupling and microscopic couplings.

Within this reverse-engineered view of the electronic correlations of FeSC many
features found in ab initio calculations (and confirmed by the analysis of experi-
ments of ref. [30] and reported in this chapter) are quite naturally understood, such
as:

– the asymmetry of the phase diagram around the total filling n = 6, which clearly
in the presently exposed rationale does not represent a special point, all physical
quantities evolving monotonously through it, in the paramagnetic phase;

– the increase of correlations with hole-doping, since all orbital fillings (and thus
the total density) are moving towards half-filling, where a Mott insulator is real-
ized;

– the extended influence of the half-filled Mott insulator, even up to the stoichio-
metric filling n = 6 (and beyond). Even if globally doped one electron away from
half-filling (that usually is considered ”far”), the five orbitals are decoupled and
then influenced by their individual populations. These are on the average only
20% away from half-filling [18, 30] (and some actually just a few percents away
from it). In this sense these materials can rather be considered ”near” the n=5
Mott insulator;

– the stronger correlations of electrons with character mainly of the t2g orbitals,
and in particular the xy ,which is the one systematically found the closest to half-
filling in calculations. The eg orbitals remain in all calculations much more filled
and are found much less correlated.

This last point calls for further analysis however.
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Naturally one would like to relate the stronger correlations found in the xy orbital
to the bare parameters of the bandstructure, and also identify the reason for their
ubiquity.

In ref. [1] the attention has been drawn to the smallness of the diagonal hopping
integral for the xy orbitals (see table 4), due to the reciprocal cancellation of direct
and ligand-mediated hopping amplitudes between these orbitals. However it can be
shown that this is not enough to determine the stronger correlations, by performing
a calculation for a ”wrong” bandstructure for BaFe2As2 in which all the hoppings
are maintained unaltered, but the bare energy of the xy orbitals is artificially lowered
(keeping the total population fixed to 6 electrons/Fe). Predictably the population of
the xy orbital is found to increase, while the one of the other orbitals moderately
decreases. In the Hund’s metal regime (i.e. for U 2.7eV and larger, for this band-
structure) the quasiparticle weights are found to follow the orbital populations, and
thus they increase for the xy orbitals and decrease for the other orbitals. This is the
essence of the orbital-decoupling mechanism because, as illustrated by the cartoon
given in this section, the orbitally-resolved spectra shift pretty rigidly and indepen-
dently from one another. Moreover the orbitally-resolved quasiparticle weight are
linear functions of the respective orbital populations, and are modified accordingly.
In this example when the bare xy energy is moved from∼ 0.1eV above (as in the re-
alistic case, see table Fig. 2) to ∼ 0.1eV below the one for the xz/yz, the two orbital
populations cross and so does the degree of correlation. For even lower energies the
xy have weaker correlations strength than the xz/yz despite all the hoppings and the
rest of the energies being unaltered.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5

   
  Z

α 
   

   
   

   
   

  n
α

U (eV)

∆xy-xz/yz = 0.1eV

xz/yz
xy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5

   
  Z

α 
   

   
   

   
   

  n
α

U (eV)

∆xy-xz/yz = -0.2eV

xz/yz
xy

Fig. 15 Quasiparticle weight (lower curves) and populations (upper curves) for the t2g orbitals
for the BaFe2As2 bandstructure (left, where the crystal-field splitting between xy and xz/yz,
∆xy−xz/yz ∼ 0.1eV ) and for an altered bandstructure where the xy energy has been artificially
lowered so that ∆xy−xz/yz ∼ −0.2eV and all the other hoppings and energies has been conserved
(J/U=0.25). This clearly shows that in the Hund’s metal regime (here for U & 2.7 eV) the correla-
tion strength is mainly set by the distance of each orbital from half-filing, despite the fact that in
both cases the nearest-neighbor hopping txy−xy is much smaller than txz−xz (see table 4).

Another instructive ”wrong” calculation can be done by modifying, in the origi-
nal BaFe2As2 bandstructure only the diagonal xy− xy hopping, by putting it equal
to the xz/yz− xz/yz one. Again in the Hund’s metal phase the xy orbitals end up
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being slightly closer to half-filling than the xz/yz, and consistently slightly more
correlated. This second calculation is certainly less clear-cut than the previous one,
since there are many other hoppings that can differentiate the kinetic-energy content
of the different t2g orbitals, but is at least consistent with the general point that we
are making that it is not the hopping structure alone that determines the correlation
differentiation in a Hund’s metal.

Nevertheless the smaller xy hopping does play a role here. Indeed based on what
I have just exposed one may think that the correlation strengths are simply tuned by
the bare crystal-field splittings: indeed the result for BaFe2As2 reported in the lower
panel of Fig. 10 follows the bare orbital energies reported in table in Fig. 2. However
this is not true for other FeSC, like KFe2As2 or the chalcogenides, where the non-
interacting orbital energies are inverted, as visible in the same table. Indeed for all
these materials the correlation end up being stronger in the xy orbital, irrespectively
of its energy being higher or lower than the xz/yz. This can even lead the xz/yz being
closer to half-filling than the xy in the non-interacting system. However as shown
in the second lowermost left panel in Fig. 9, the interactions lead to a population
crossing and within the Hund’s metal the xy indeed lies closer to half-filling, and the
correlation strength is set accordingly. This is consistent with the xy orbital having
a smaller Hubbard band (due to the smaller bare hopping), in the view outlined by
the orbital-decoupling cartoon of Fig. 13.

Thus neither the order in the bare orbital energies nor a hierarchy in the hopping
amplitudes are sufficient to determine the correlation strengths in the various or-
bitals. What we highlight as the most solid trend is, once again, the final (i.e. in the
fully interacting system) orbital population. Within the Hund’s metal regime, thanks
to the orbital-decoupling mechanism, the correlation strength scales linearly with it,
and one can expect that the hierarchy of correlation strengths follows the one in the
population, as we have found in all the performed calculations thus far (see also the
supplementary material of Ref. [30]).

Even this is not a rigorous result however. Indeed even if within the orbitally
decoupled regime the Zα(nα) are linear, the slope is not universal and has some
variation among the orbitals, as clearly shown in Fig. 14. An exact understanding
of the origin of the different slopes has not been reached as of today. There are
indications that they are sensitive to the bare crystal-field splittings. This can be
rigorously shown in a two band toy model (see Appendix). This is also consistent
with the realistic cases of FeSC that we studied up to now (as reported in Ref. [30]
and its supplementary material): the slopes go from the steepest for the orbitals with
higher orbital energies to the least steep for the low-lying ones. This implies for
example that the Zxy(nxy) has the steepest slope in LaFeAsO and BaFe2As2, while
Zxz/yz(nxz/yz) is steepest in the chalcogenides.

If a proper rescaling of the slopes with the bare orbital energies could be worked
out, the dependence of the correlation strength on the individual orbital filling would
be universal and a rigorous result in the Hund’s metallic phase.

The take home message, nevertheless is that the most relevant quantity that sets
the individual correlation strength in each orbital in the Hund’s metal phase is the in-
teracting distance in population from half-filling of that orbital. This is an emergent
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behaviour, as said in the introduction, because the interacting orbital populations are
an ”intermediate” quantity, set in a non-trivial way by the microscopic features of
the system.

7 Conclusions

In this chapter I hope to have given enough evidence pointing at the coexistence
of strongly and weakly correlated electrons in the conduction bands of Iron-based
superconductors. This evidence is both experimental (from a lot of data available in
the literature), and theoretical (from calculations available in the literature, from pre-
vious work of the author and collaborators, and from some new material provided in
this chapter). Moreover it is well grounded in the fundamental emergent behaviour
found in a Hund’s metal in proximity of the half-filled Mott insulator arising for
realistic values of the interaction strength that is orbital-decoupling. The under-
standing of this basic mechanism helps understanding the reason for the observed
correlation strength and also the action of the main physical knobs like hoppings
and crystal-field splitting, even if it is found that the fundamental variables are the
orbital populations of the interacting system.

A couple of last remarks are in order.
Some aspects of orbital decoupling are still not understood in detail. Besides the

aforementioned reason for the different slopes of the curves Zα(nα), I would also
highlight the role of hybridization, which is certainly depressed by Hund’s cou-
pling but essential, for instance, in inducing the heavy-fermionic behavior found at
strongly hole-doped 122 FeSC. In chalcogenides, and in particular FeTe, hybridiza-
tion seems instead incapable to prevent an actual orbital-selective Mott state, that
indeed seems to be found experimentally[87].

Also, we have well characterized and reverse-engineered the behaviour of FeSC,
and in general of Hund’s metals, once within the Hund’s metal phase. However the
1111 and 122 FeSC (those with the highest superconducting critical temperatures)
lie most probably at the border between the normal and Hund’s metal phase. There
may be specificities to be attributed to this particular position in the phase diagram,
on the verge of the Hund’s metal phase, which are still to be clarified.

Finally some very important issues have been left out of the scope of this chapter.
It is worth citing that we have focused on the properties of the paramagnetic normal
tetragonal phase, so that no discussion specific to the magnetic transition and to the
structural one, as well as those pertaining to the superconducting phase transition
and pairing mechanism has been tackled here.

Lastly I want to mention that I have not entered in the possible parallels that can
be traced between the physics of FeSC and that of Cuprates. I want to mention nev-
ertheless that based on the emergent physics of orbital decoupling a common phase
diagram revolving around the half-filled Mott insulator and the ensuing (selective)
Mottness has been put forth in our work Ref. [30], where we have joined the present
discussion of orbital decoupling in FeSC with a similar analysis of the data by Gull
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et al.[86]. We have highlighted that the selective Mottness found by Gull et al. in the
bi-dimensional Hubbard model used for Cuprates and studied with the Dynamical
Cluester Approximation, seems to stem from an orbital-decoupling mechanism very
similar to that discussed here, only applying to the different areas (nodal, antinodal)
of the Brillouin zone. Indeed when plotting the nodal/antinodal quasiparticle weight
as a function of the fraction of doping that can be attributed to the nodal/antinodal
area (see supplemental material of Ref. [30]) a slope very similar to the ones found
for FeSC is obtained (see Fig. 14), pointing to a very similare orbital-deoupling
mechnism between FeSC and Cuprates.

Acknowledgements This chapter is heavily founded on Ref. [30], a work that was performed with
Gianluca Giovannetti and Massimo Capone, to whom I am indebted. The realistic bandstructures
discussed in this chapter are those used in Ref. [30], and have been calculated by G. Giovannetti.

Appendix: the slope of the linear Zα(nα) in the orbital
decoupling regime

The direct proportionality of the quasiparticle weight to the individual orbital pop-
ulation when approaching the Mott insulator is the main evidence of the orbital
decoupling mechanism induced by Hund’s coupling in the models for FeSC. How-
ever it can be noticed from Fig. 14 that the the slope of the linear behaviour is not
universal.

In order to have an indication on how the bandstructure determines the slopes of
the linear Z(n) for each orbital, I have performed a simplified analysis on a Hubbard
model with two bands of equal half-bandwidth D, (with hopping integrals as appro-
priate for a doublet in a cubic environment, see e.g. Ref. [88]), slightly hybridized
(by an interorbital hopping V=0.05D) and split by a crystal field ∆ . The Kanamori
density-density for of the interaction is used, with U=3D and J=U/4 and the model
is solved within slave-spin mean-field.

A Mott insulator is found at half-filling and strong orbital differentiation in
the mass enhancements for a large region of doping around it: as expected, for
electron-doping (hole-doping being the same, for particle-hole symmetry), for a
small crystal-field splitting the upper orbital is closer to individual half-filling and
more correlated than the lower one. This situation becomes extreme very close to
half-filling and an orbital-selective Mott transition takes place eventually (albeit re-
tarded by the hybridization - unlike the 5-orbital case in the regime relevant for
FeSC, where the hybridization actually prevents the OSMT from happening). This
happens when the upper orbital reaches individual half-filling and has a Mott gap
at the chemical potential while the lower band remains metallic until global half-
filling, where it becomes Mott insulating too.

The curves Zα(nα) are indeed linear (see Fig.16) and the slope is steeper for the
upper band. Thus at a given orbital population, the mass enhancement is height-
ened by the presence of other more correlated (possibly even insulating) orbitals.
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Fig. 16 Orbitally-resolved quasiparticle weight as a function of the respective orbital population in
a two band Hubbard model with U = 3D and J/U = 0.25 and a light hybridization V = 0.05D, for
several values of the crystal-field splitting ∆ between the two orbital energies. The linear behavior
typical of the orbital-decoupling near the Mott insulating state is indeed found in both orbitals.
Inset: the slope of the steeper curve (corresponding to the orbital higher in energy) in the electron-
doped case scales with the bare crystal-field splitting.

It is found that the slopes of the curves for the upper orbital (the most correlated
and closest to half-filling, that can be viewed as mimicking the t2g orbitals in the
realistic calculations) scale exactly (see inset in Fig. 1d) with the bare-crystal field
splitting (it is worth recalling here that the crystal field renormalized by the interac-
tions changes with the filling, instead).

The physics described in this simplified model is quite similar to the one we
have investigated in the ab-initio calculations for iron superconductors. Indeed this
scaling seems to apply to the t2g orbitals in the three compounds studied in Ref. [30]:
while for the studied iron pnictides (LaFeAsO and BaFe2As2) the xy orbital has a
steeper slope than the xz/yz (which have in turn a slope steeper than the eg orbitals),
in FeSe there is an inversion, and the curve for the xy is less steep than for the xz/yz.
Now, this seems to reflect the bare crystal fields here too, since as reported in table 2
the bare energy for the xy is above the one for the xz/yz in LaFeAsO and BaFe2As2,
while it is below in the chalcogenides.

Thus it seems that albeit the renormalized crystal-field makes the xy closer to
half-filling and hence more correlated than the xz/yz, the footprint of the values of
the crystal-field in the non-interacting system remains in the slopes of the Zα(nα).
Further work is however needed in order to clarify if this is always true, and what is
the mechanism behind.



30 Luca de’ Medici

References

1. Z.P. Yin, K. Haule, G. Kotliar, Nat Mater 10(12), 932 (2011). URL
http://dx.doi.org/10.1038/nmat3120

2. P. Hansmann, R. Arita, A. Toschi, S. Sakai, G. Sangiovanni, K. Held, Phys.
Rev. Lett. 104, 197002 (2010). DOI 10.1103/PhysRevLett.104.197002. URL
http://link.aps.org/doi/10.1103/PhysRevLett.104.197002

3. K. Haule, G. Kotliar, New Journal of Physics 11(2), 025021 (2009). URL
http://stacks.iop.org/1367-2630/11/i=2/a=025021

4. M.D. Johannes, I.I. Mazin, Phys. Rev. B 79, 220510 (2009). DOI
10.1103/PhysRevB.79.220510. URL http://link.aps.org/doi/10.1103/PhysRevB.79.220510

5. W.L. Yang, A.P. Sorini, C.C. Chen, B. Moritz, W.S. Lee, F. Vernay, P. Olalde-Velasco, J.D.
Denlinger, B. Delley, J.H. Chu, J.G. Analytis, I.R. Fisher, Z.A. Ren, J. Yang, W. Lu, Z.X. Zhao,
J. van den Brink, Z. Hussain, Z.X. Shen, T.P. Devereaux, Phys. Rev. B 80, 014508 (2009). DOI
10.1103/PhysRevB.80.014508. URL http://link.aps.org/doi/10.1103/PhysRevB.80.014508

6. F. Rullier-Albenque, D. Colson, A. Forget, H. Alloul, Phys. Rev. Lett.
103, 057001 (2009). DOI 10.1103/PhysRevLett.103.057001. URL
http://link.aps.org/doi/10.1103/PhysRevLett.103.057001

7. M.M. Qazilbash, J.J. Hamlin, R.E. Baumbach, L. Zhang, D.J. Singh, M.B. Maple, D.N. Basov,
Nat Phys 5(9), 647 (2009). URL http://dx.doi.org/10.1038/nphys1343

8. L. de’ Medici, S.R.Hassan, M. Capone, X. Dai, Phys. Rev. Lett. 102, 126401 (2009)
9. L. de’ Medici, S. Hassan, M. Capone, J. Supercond. and N. Mag. 22, 535 (2009)

10. S.P. Kou, T. Li, Z.Y. Weng, Europhys. Lett. 88, 17010 (2009)
11. A. Hackl, M. Vojta, New J. Phys. 11, 055064 (2009)
12. W.G. Yin, C.C. Lee, W. Ku, Phys. Rev. Lett. 105, 107004

(2010). DOI 10.1103/PhysRevLett.105.107004. URL
http://link.aps.org/doi/10.1103/PhysRevLett.105.107004

13. W.G. Yin, C.H. Lin, W. Ku, Phys. Rev. B 86, 081106 (2012). DOI
10.1103/PhysRevB.86.081106. URL http://link.aps.org/doi/10.1103/PhysRevB.86.081106

14. A. Shorikov, M. Korotin, S. Streltsov, S. Skornyakov, D. Korotin, V. Anisi-
mov, Journal of Experimental and Theoretical Physics 108, 121 (2009). URL
http://dx.doi.org/10.1134/S1063776109010154. 10.1134/S1063776109010154

15. M.S. Laad, L. Craco, ArXiv e-prints (2009)
16. L. Craco, S. Leoni, EPL (Europhysics Letters) 92(6), 67003 (2010). URL

http://stacks.iop.org/0295-5075/92/i=6/a=67003
17. M. Aichhorn, S. Biermann, T. Miyake, A. Georges, M. Imada, Phys.

Rev. B 82, 064504 (2010). DOI 10.1103/PhysRevB.82.064504. URL
http://link.aps.org/doi/10.1103/PhysRevB.82.064504

18. H. Ishida, A. Liebsch, Phys. Rev. B 81, 054513 (2010). DOI 10.1103/PhysRevB.81.054513.
URL http://link.aps.org/doi/10.1103/PhysRevB.81.054513

19. A. Liebsch, H. Ishida, Phys. Rev. B 82, 155106 (2010). DOI 10.1103/PhysRevB.82.155106.
URL http://link.aps.org/doi/10.1103/PhysRevB.82.155106

20. P. Werner, M. Casula, T. Miyake, F. Aryasetiawan, A.J. Millis, S. Biermann, Nat Phys 8(4),
331 (2012). URL http://dx.doi.org/10.1038/nphys2250

21. Z.P. Yin, K. Haule, G. Kotliar, Phys. Rev. B 86, 195141 (2012). DOI
10.1103/PhysRevB.86.195141. URL http://link.aps.org/doi/10.1103/PhysRevB.86.195141

22. T. Misawa, K. Nakamura, M. Imada, Phys. Rev. Lett. 108,
177007 (2012). DOI 10.1103/PhysRevLett.108.177007. URL
http://link.aps.org/doi/10.1103/PhysRevLett.108.177007

23. R. Yu, Q. Si, Phys. Rev. B 86, 085104 (2012). DOI 10.1103/PhysRevB.86.085104. URL
http://link.aps.org/doi/10.1103/PhysRevB.86.085104

24. R. Yu, Q. Si, ArXiv e-prints (2012)
25. E. Bascones, B. Valenzuela, M.J. Calderón, ArXiv e-prints (2012)



Weak and strong electronic correlations in Fe superconductors 31
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45. R. Žitko, D. Hansen, E. Perepelitsky, J. Mravlje, A. Georges, B.S. Shastry,

Phys. Rev. B 88, 235132 (2013). DOI 10.1103/PhysRevB.88.235132. URL
http://link.aps.org/doi/10.1103/PhysRevB.88.235132

46. P. Lu, Phys. Rev. B 49, 5687 (1994)
47. O. Gunnarsson, E. Koch, R. Martin, Phys. Rev. B 54, R11026 (1996)
48. M.J. Rozenberg, Phys. Rev. B 55, R4855 (1997)
49. S. Florens, A. Georges, G. Kotliar, O. Parcollet, Phys. Rev. B 66, 205102 (2002)
50. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)
51. P. Nozières, The European Physical Journal B - Condensed Matter and Complex Systems 6(4),

447 (1998). DOI 10.1007/s100510050571. URL http://dx.doi.org/10.1007/s100510050571
52. A. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, 1993)
53. B. Coqblin, J.R. Schrieffer, Phys. Rev. 185, 847 (1969). DOI 10.1103/PhysRev.185.847. URL

http://link.aps.org/doi/10.1103/PhysRev.185.847
54. I. Okada, K. Yosida, Prog. Theor. Phys. 49, 1483 (1973)
55. J.R. Schrieffer, J. Appl. Phys. 38, 1143 (1967)
56. A.H. Nevidomskyy, P. Coleman, Phys. Rev. Lett. 103(14), 147205 (2009). DOI

10.1103/PhysRevLett.103.147205



32 Luca de’ Medici

57. C. Aron, G. Kotliar, ArXiv e-prints (2014)
58. D. van der Marel, G.A. Sawatzky, Phys. Rev. B 37, 10674 (1988). DOI

10.1103/PhysRevB.37.10674. URL http://link.aps.org/doi/10.1103/PhysRevB.37.10674
59. D. van der Marel, The electronic structure of embedded transition-metal atoms. Ph.D. thesis,

Rijkuniversiteit Groningen (1985)
60. L. de’ Medici, J. Mravlje, A. Georges, Phys. Rev. Lett. 107, 256401 (2011). DOI

10.1103/PhysRevLett.107.256401
61. T.Pruschke, R. Bulla, Eur. Phys. J. B 44, 217 (2005)
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